A study showing a correlation between the effect of treadmill and ergometer on VO\(_2\)\(_{\text{max}}\) in athlete

Vivek V Nalgirkar\(^1\), Mrunalini R Kanvinde\(^1,\)*

\(^1\) Dept. of Physiology, D Y Patil Medical College Hospital and Research Institute, Navi Mumbai, Maharashtra, India

1. Introduction

To our knowledge, no paper has examined the agreement between the treadmill and the hand ergometer. Treadmill and the hand ergometer are the two most common exercises and are used interchangeably to assess exercise tolerance.

As exercise intensity increases so does oxygen consumption reaches the point where exercise intensity can continue to increase without the associated rise in oxygen consumption. Regular physical activity during leisure time is associated with better health outcomes. Physical fitness and level of regular exercise are closely related to cardiovascular health. To maintain a healthy lifestyle, the importance of physical activity cannot be underestimated. It is the single most important endeavor that one can participate in to promote health throughout a lifetime.

Physical fitness and level of regular exercise are closely related to cardiovascular health. Regular exercise leads to functional and structural adaptations that improve cardiac function.\(^1\) Modifiable lifestyle factors, as cardiorespiratory...
fitness (CRF) and body mass, may prevent hypertension. To maintain a healthy lifestyle, the importance of physical activity cannot be underestimated. It is the single most important endeavor that one can participate in to promote health throughout a lifetime. (38)

When challenged with any physical task, the human body responds through a series of integrated changes in function that involve most, if not all, of its physiologic systems. Movement requires activation and control of the musculoskeletal system; the cardiovascular and respiratory systems provide the ability to sustain this movement over extended periods. When the body engages in exercise training several times a week or more frequently, each of these physiologic systems undergoes specific adaptations that increase the body’s efficiency and capacity.

Endurance training results in central and peripheral adaptations that markedly improve an individual’s ability to perform physical work. Athletes are thus commonly assumed to be able to tolerate many kinds of physiological stressors better than non-athletes.

Movement requires activation and control of the musculoskeletal system; the cardiovascular and respiratory systems provide the ability to sustain this movement over extended periods. When the body engages in exercise training several times a week or more frequently, each of these physiologic systems undergoes specific adaptations that increase the body’s efficiency and capacity. The magnitude of these changes depends largely on the intensity and duration of the training sessions, the force or load used in training, and the body’s initial level of fitness. Removal of the training stimulus, however, will result in loss of the efficiency and capacity that was gained through these training-induced adaptations; this loss is a process called detraining.

\(\dot{V}O_{2max} \) gives an important indication about the oxygen requirement of the heart per beat. As for exercise intensity increase, oxygen consumption reaches the point where exercise intensity can continue to increase without the associated rise in oxygen consumption. Therefore cardiorespiratory fitness can be a limitation for \(\dot{V}O_{2max} \), which is an important component of health-related physical fitness.

2. Methodology

2.1. Data collection

After getting approval from the medical ethics committee and permission from Dr. Priya Cholera and Dr. Kane (HOD of Cardiology) the study was initiated in the Stress Test Lab at Dr. D. Y. Patil Hospital & Research center, Nerul, Navi Mumbai. For this study, 40 athletes and non-athletes were chosen (age-group above 18 - 24 years).

2.2. Inclusion criteria

BMI should be 18–24 6m2/kg (according to National Institute of Health Science).

2.3. Exclusion criteria

1. The subject should have a 2 –3 hours gap between diet and exercise.
2. Subject should not have a cardiorespiratory or orthopedic disease.

In this study, safety parameters chosen were age, height, weight, blood pressure, pulse, and respiratory parameters were respiratory rates, peak expiratory flow rate while predictors chosen were \(\dot{V}O_{2max} \).

Before the commencement of the study, the subject was asked to sign an informed consent form.

BMI of the subject was calculated by the formula:

\[
BMI = \frac{\text{Weight in Kg}}{\text{Height in m}^2}
\]

Height was measured by a measuring tape. Weight was measured by a standard weighing machine (stadiometer).

Blood pressure and pulse were recorded by a standardized digital blood pressure monitor.

Peak expiratory flow rate was recorded by using a peak expiratory flow meter.

After signing an informed consent form, one group of 20 athletes was asked to perform treadmill and another group of 20 athletes was asked to perform hand ergometry and from safety parameters, \(\dot{V}O_{2max} \) and was calculated, to predict correlation.

For comparison 40 non-athlete were asked to do treadmill and hand ergometry and their \(\dot{V}O_{2max} \) was also calculated.

2.4. Treadmill

20 athletes and 20 non-athletes were asked to perform exercise on Treadmill, by using Bruce protocol for the different duration 3 times a week. (Till to get 90% of maximal, age-predicted heart-rate was achieved).\(^2\)

Treadmill – intensity – 10mm/mv, frequency – 50 hertz, speed – 25 m/sec.

2.5. Hand ergography

20 athletes and 20 non-athletes were asked to perform hand ergography for 15 mins, 3 times a week. Ergograph used is Mosso’s ergograph, in which there is an arrangement for fixing the hand and fingers in appropriate holders and the middle finger is put in a sling present at another end, which is to be flexed for alternate seconds. A weight of 1.5kg is attached to the cord, which acts as a tension.\(^3\) After doing each exercise -Treadmill and hand ergography, blood pressure, Pulse and respiratory rate and peak expiratory flow rate was again recorded \(\dot{V}O_{2max} \) was calculated.-
\[\dot{V}O_{2max} \text{ (ml/kg/min)} = 3.62 \times T + 3.91 \text{ (Treadmill)} \] (12)

\[\dot{V}O_{2max} = 15.3 \times \frac{\text{HR rest}}{\text{HR max}} \text{ (Ergography)} \]

2.6. Statistical analysis

Statistical analysis was done by unpaired T-test.

3. Result

![Graph showing Mean value of VO2Max](image)

Fig. 1:

Tables 1 and 2 along with the graph show that a good correlation was between the effect of the treadmill and ergometer on \(\dot{V}O_{2max} \) (\(P>0.001 \)) in athletes as compared to non-athletes (\(P>0.001 \)) after estimating \(\dot{V}O_{2max} \). \(\dot{V}O_{2max} \) was found to be much more increased in athletes as well as non-athletes performing treadmill than athletes as well as non-athletes performing hand ergometry (\(P>0.001 \)).

Thus a much more correlation was found out between the effect of the treadmill through Bruce protocol and the ergometer through Mosso’s ergograph on \(\dot{V}O_{2max} \) in athletes as compared to non-athletes.

4. Discussion

This study demonstrates how \(\dot{V}O_{2max} \), calculated after doing the treadmill through Bruce protocol and hand ergometer, is the best parameter in athletes and non-athletes. This study indicates that young, normal, sedentary men i.e. non-athletes are capable of developing some of the athlete’s physiological characteristics. The effects of exercise (Treadmill and hand ergometer) on \(\dot{V}O_{2max} \) are dependent upon the frequency, intensity, and duration of the exercise itself, consistent with the findings of Guoyuan Huang.1

The abilities of such functional components are reflected in such measurable terms as maximal oxygen uptake and physical working capacity.4 Recreational athletes, a growing population that is commonly encountered in clinical practice, perform far less exercise volume and do so at lower training intensities than athletes at higher training intensity. But to what degree the moderate-intensity exercise training typically practiced by recreational athletes is unknown.5

However, it is agreed that ventilatory or diffusion capacities, or both, are not limiting factors in determining a normal individual’s exercise capabilities.6

Physiologically \(\dot{V}O_{2max} \) is the intensity of an individual to increase metabolic processes with the requirements of increased physical efforts. This result due to the transformation of chemical energy into a mechanical one. This, in combination with your body’s improved ability to deliver blood to muscles during exertion, ensures that oxygen gets distributed more effectively when you’re exercising and when you’re resting matching with the result obtained by Andrew J Shah.7

To the athlete who does aspire to endurance-type sports and does have favorable genetics for aerobic activities, the emphasis changes from things that cannot be changed (genetics) to abilities that can be improved like muscular endurance, neuromuscular coordination, mechanical efficiency, and cardiorespiratory fitness. \(\dot{V}O_{2max} \) will be the ultimate limiting factor in endurance activities for the chronically trained athlete. \(\dot{V}O_{2max} \) is the measure of aerobic capacity and determined as an international standard of physical capacity.

As per Smita S. Bute, \(\dot{V}O_{2max} \) in athletes is 62% higher than non-athletes, which suggested that men who regularly exercise vigorously can maintain cardiovascular function, which is a consistent finding in many training studies.8

In athletes, it is oxygen delivery, not oxygen utilization that limits \(\dot{V}O_{2max} \). After physical training, \(\dot{V}O_{2max} \) improvement mainly originates during exercise with increasing stroke volume. The maximum rate of work that can be performed is limited by the combined capacities of the cardiovascular and respiratory systems to take in, transport, and use oxygen. Thus maximum oxygen intake measures the functional capacity of the cardiovascular system and is a useful criterion for assessment of overall capacity to perform work.

This study also indicates that non-athletes are capable of developing some of the true athlete’s physiological characteristics. They possess an expanded oxygen transport system which should be reflected in increased work capabilities.
Table 1:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Athletes</th>
<th>Unpaired T-Test</th>
<th>P-value</th>
<th>Significant at 5% level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Athletes Ergography</td>
<td>0.486</td>
<td>0.630</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Athletes Treadmill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO2max</td>
<td>Athletes Ergography</td>
<td>10.139**</td>
<td><0.001</td>
<td>es</td>
</tr>
<tr>
<td></td>
<td>Athletes Treadmill</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Normal</th>
<th>Unpaired T-Test</th>
<th>P-value</th>
<th>Significant at 5% level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>Normal Ergography</td>
<td>4.116**</td>
<td><0.001</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Normal Treadmill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO2max</td>
<td>Normal Ergography</td>
<td>11.544**</td>
<td><0.001</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Normal Treadmill</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant at 5% level i.e., P<0.05 **statistically highly significant at 0.01% level i.e., P<0.001

5. Conclusion

It was concluded VO2max is found to be much more increased during treadmill than ergometer in athletes as compared to non-athletes.

6. Source of Funding

None.

7. Conflict of Interest

The authors declare no conflict of interest.

References

Author biography

Vivek V Nalgirkar, Professor

Mrunalini R Kanvinde, Assistant Professor

Cite this article: Nalgirkar VV, Kanvinde MR. A study showing a correlation between the effect of treadmill and ergometer on VO2max in athlete. Indian J Clin Anat Physiol 2022;9(1):50-53.